Hi. I'm Ashley Edwards.

And I'm a research scientist working on reinforcement learning at Uber AI Labs. I received a PhD in 2019 from Georgia Tech, where I worked on perceptual goal specifications for RL under the guidance of Dr. Charles Isbell. I received my B.S. in Computer Science from the University of Georgia in 2011.

Learn about what I do


Rewards often act as the sole feedback for Reinforcement Learning (RL) problems. This signal is surprisingly powerful. It can motivate agents to solve tasks without any further guidance for how to accomplish them. Nevertheless, rewards do not come for free, and are typically hand-engineered for each problem. Furthermore, rewards are often defined as a function of an agent’s state variables. These components have traditionally been tuned to the domain and include information such as the location of the agent or other objects in the world. The reward function then is inherently based on domain-specific representations. While such reward specifications can be sufficient enough to produce optimal behavior, more complex tasks might be difficult to express in this manner. Suppose a robot has a task of building origami figures. The environment would need to provide a reward each time the robot made a correct figure, thus requiring the program designer to define a notion of correctness for each desired configuration. Constructing a reward function for each model might become tedious and even difficult—-what should the inputs even be?

Humans regularly exploit learning materials outside of the physical realm of a task, be it through diagrams, videos, text, and speech. For example, we might look at an image of a completed origami figure to determine if our own model is correct. My research describes similar approaches for presenting tasks to agents. In particular, I aim to develop methods for specifying perceptual goals both within and outside of the agent’s environment, and Perceptual Reward Functions (PRFs) that are derived from these goals. This will allow us to represent goals in settings where we can more easily find or construct solutions, without requiring us to modify the reward function when the task changes. My thesis aims to show that employing perceptual goal specifications for goal-directed tasks: is as straightforward as specifying domain-specific rewards; is a more general representation for tasks; and equally enables task completion. You can view my dissertation here!

Perceptual Values from Observation [paper]
Ashley D. Edwards, Charles L. Isbell

Imitation by observation is an approach for learning from expert demonstrations that lack action information, such as videos. Recent approaches to this problem can be placed into two broad categories: training dynamics models that aim to predict the actions taken between states, and learning rewards or features for computing them for Reinforcement Learning (RL). In this paper, we introduce a novel approach that learns values, rather than rewards, directly from observations. We show that by using values, we can significantly speed up RL by removing the need to bootstrap action-values, as compared to sparse-reward specifications.

This work was accepted into the Workshop on Self-Supervised Learning at ICML 2019.

Imitating Latent Policies from Observation [paper] [code]
Ashley D. Edwards, Himanshu Sahni, Yannick Schroecker, Charles L. Isbell

In this paper, we describe a novel approach to imitation learning that infers latent policies directly from state observations. We introduce a method that characterizes the causal effects of latent actions on observations while simultaneously predicting their likelihood. We then outline an action alignment procedure that leverages a small amount of environment interactions to determine a mapping between the latent and real-world actions. We show that this corrected labeling can be used for imitating the observed behavior, even though no expert actions are given. We evaluate our approach within classic control environments and a platform game and demonstrate that it performs better than standard approaches.

This work was accepted into ICML 2019.

Forward-Backward Reinforcement Learning [paper]
Ashley D. Edwards, Laura Downs, James C. Davidson

Goals for reinforcement learning problems are typically defined through hand-specified rewards. To design such problems, developers of learning algorithms must inherently be aware of what the task goals are, yet we often require agents to discover them on their own without any supervision beyond these sparse rewards. While much of the power of reinforcement learning derives from the concept that agents can learn with little guidance, this requirement greatly burdens the training process. If we relax this one restriction and endow the agent with knowledge of the reward function, and in particular of the goal, we can leverage backwards induction to accelerate training. To achieve this, we propose training a model to learn to take imagined reversal steps from known goal states. Rather than training an agent exclusively to determine how to reach a goal while moving forwards in time, our approach travels backwards to jointly predict how we got there. We evaluate our work in Gridworld and Towers of Hanoi and empirically demonstrate that it yields better performance than standard DDQN.

This work was accepted into the Machine Learning in Planning and Control of Robot Motion workshop at ICRA in 2018.

Transferring Agent Behaviors from Videos via Motion GANs [paper]
Ashley D. Edwards, Charles L. Isbell

A major bottleneck for developing general reinforcement learning agents is determining rewards that will yield desirable behaviors under various circumstances. We introduce a general mechanism for automatically specifying meaningful behaviors from raw pixels. In particular, we train a generative adversarial network to produce short sub-goals represented through motion templates. We demonstrate that this approach generates visually meaningful behaviors in unknown environments with novel agents and describe how these motions can be used to train reinforcement learning agents.

This work was accepted into the Deep Reinforcement Learning Symposium at NIPS in 2017.

Cross-Domain Perceptual Reward Functions [paper]
Ashley D. Edwards, Srijan Sood, Charles L. Isbell

In reinforcement learning, we often define goals by specifying rewards within desirable states. One problem with this approach is that we typically need to redefine the rewards each time the goal changes, which often requires some understanding of the solution in the agents environment. When humans are learning to complete tasks, we regularly utilize alternative sources that guide our understanding of the problem. Such task representations allow one to specify goals on their own terms, thus providing specifications that can be appropriately interpreted across various environments. This motivates our own work, in which we represent goals in environments that are different from the agents. We introduce Cross-Domain Perceptual Reward (CDPR) functions, learned rewards that represent the visual similarity between an agents state and a cross-domain goal image. We report results for learning the CDPRs with a deep neural network and using them to solve two tasks with deep reinforcement learning.

This work was accepted into RLDM 2017.

Perceptual Reward Functions [paper]
Ashley D. Edwards, Charles L. Isbell, Atsuo Takanishi

Reinforcement learning problems are often described through rewards that indicate if an agent has completed some task. This specification can yield desirable behavior, however many problems are difficult to specify in this manner, as one often needs to know the proper configuration for the agent. When humans are learning to solve tasks, we often learn from visual instructions composed of images or videos. Such representations motivate our development of Perceptual Reward Functions, which provide a mechanism for creating visual task descriptions. We show that this approach allows an agent to learn from rewards that are based on raw pixels rather than internal parameters.

This work was accepted into a 2016 IJCAI workshop, Deep Reinforcement Learning: Frontiers and Challenges.

Expressing Tasks Robustly via Multiple Discount Factors [paper]
Ashley D. Edwards, Michael L. Littman, Charles L. Isbell

Reward engineering is the problem of expressing a target task for an agent in the form of rewards for a Markov decision process. To be useful for learning, it is important that these encodings be robust to structural changes in the underlying domain; that is, the specification remain unchanged for any domain in some target class. We identify problems that are difficult to express robustly via the standard model of discounted rewards. In response, we examine the idea of decomposing a reward function into separate components, each with its own discount factor. We describe a method for finding robust parameters through the concept of task engineering, which additionally modifies the discount factors. We present a method for optimizing behavior in this setting and show that it could provide a more robust language than standard approaches.

This work was accepted into RLDM 2015.